Interactive Statistical Learning Notebooks
🎓 Interactive demonstrations for Advanced Data Analytics and Quantitative Data Analysis
🐍 Python 3.12+ | 📊 Marimo | 📈 Plotly | 🧮 WebAssembly
STAT312: Advanced Data Analytics
🔍 k-Nearest Neighbours Classification
Learn the fundamentals of k-NN classification through interactive exploration of decision boundaries, parameter effects, and performance evaluation.
- Real-time decision boundary visualisation
- Interactive parameter adjustment
- Bias-variance trade-off exploration
- Custom prediction points
- Performance comparison plots
🚀 Launch Demo | 📖 Documentation
🧮 Kernel Density Estimation
Explore kernel density estimation techniques through interactive visualisation of density estimates, kernel choices, bandwidth effects, and data distributions.
- Real-time density estimate visualisation
- Interactive bandwidth adjustment
- Multiple kernel function comparison
- Data sampling and generation
- Bias-variance trade-off exploration
🚀 Launch Demo | 📖 Documentation
📈 Non-Parametric Regression
Explore kernel methods and non-parametric regression techniques with side-by-side comparisons of k-NN and Nadaraya-Watson approaches.
- Multiple kernel function comparison
- Bandwidth parameter exploration
- Method comparison visualisation
- Kernel weight visualisation
- Train/test performance analysis
🚀 Launch Demo | 📖 Documentation
STAT420: Quantitative Data Analysis
🌳 Classification and Regression Trees (CART)
Explore decision trees and cost-complexity pruning through interactive tree growth and visualisation.
- Control tree growth with maximum depth parameter
- Interactively prune trees using α parameter
- Visualise complete tree structure with Mermaid diagrams
- Explore non-linear decision boundaries
- Understand bias-variance trade-offs through pruning
- Zoom in/out on tree diagrams for detailed inspection
🚀 Launch Demo | 📖 Documentation